30(x^2+1/x^2)-77(x-1/x)-12=0

Simple and best practice solution for 30(x^2+1/x^2)-77(x-1/x)-12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30(x^2+1/x^2)-77(x-1/x)-12=0 equation:



30(x^2+1/x^2)-77(x-1/x)-12=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
30(x^2+1/x^2)-77(+x-1/x)-12=0
We multiply parentheses
30x^2+30x-77x+77x-12=0
We add all the numbers together, and all the variables
30x^2+30x-12=0
a = 30; b = 30; c = -12;
Δ = b2-4ac
Δ = 302-4·30·(-12)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{65}}{2*30}=\frac{-30-6\sqrt{65}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{65}}{2*30}=\frac{-30+6\sqrt{65}}{60} $

See similar equations:

| 8=9+3v | | 8=9+v3 | | -6r+3=-36 | | 4n-7=-56 | | x2-20x+72=-3x | | -2x-4=-2×+4 | | 9x-24=3x’-36 | | 6n+16.2=1.6 | | 4x-30=75-7x | | 12.5/5=50/x | | 9w=9X | | 1-x/2=-2 | | 54=14x-8x | | 5(x-3)=10x | | 2z+2z−2z−2z+4z+1=17 | | (1/x-3)(2/x-4)=0 | | (1/x-3)(2/x+4)=0 | | 4(x+8)=27 | | 0.06(x)=2.16 | | 0.06(x)=36 | | 2+v/4=30 | | -v/4=48 | | 12u=-25 | | -4=2+w | | y/2-10=9 | | X*0.12=y | | -5=-(c-13) | | 4n+6n=-6 | | y=8*5^-02 | | x³-3x-4=0 | | x(7x+28)=0 | | -51(1-5x)+5(-8x-2)=-4x-8x |

Equations solver categories